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Abstract
A variety of lepton flavour violating effects related to the recent discovery of
neutrino oscillations and mixings is here systematically discussed in terms of
an S3-flavour permutational symmetry. After a brief review of some relevant
results on lepton masses and mixings, that had been derived in the framework
of a minimal S3-invariant extension of the Standard Model, we derive explicit
analytical expressions for the matrices of the Yukawa couplings and compute
the branching ratios of some selected flavour-changing neutral current (FCNC)
processes as well as the contribution of the exchange of neutral flavour-changing
scalars to the anomaly of the muon’s magnetic moment as functions of the
masses of the charged leptons and the neutral Higgs bosons. We find that
the S3 × Z2 flavour symmetry and the strong mass hierarchy of the charged
leptons strongly suppress the FCNC processes in the leptonic sector well below
the present experimental upper bounds by many orders of magnitude. The
contribution of FCNC to the anomaly of the muon’s magnetic moment is small
but non-negligible.

PACS numbers: 11.30.Hv, 14.60.Pq, 14.60.St, 14.80.Cp, 12.15.Ff, 12.15.Mm

1. Introduction

Neutrino oscillation observations and experiments, made in the past 9 years, have allowed
the determination of the differences of the squared neutrino masses and the mixing angles
in the leptonic sector [1–19]. The discovery that neutrinos have non-vanishing masses and
mix among themselves much like the quarks do provides the first conclusive evidence of
new physics beyond the Standard Model. This important discovery also brought out very
forcefully the need of extending the Standard Model to accommodate in the theory the new
data on neutrino physics in a coherent way, free of contradictions and without spoiling the
Standard Model’s many phenomenological successes.
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In the Standard Model, the Higgs and Yukawa sectors, which are responsible for the
generation of the masses of quarks and charged leptons, do not give mass to the neutrinos.
Furthermore, the Yukawa sector of the Standard Model already has too many parameters
whose values can only be determined from experiment. These two facts point to the necessity
and convenience of extending the Standard Model in order to make a unified and systematic
treatment of the observed hierarchies of masses and mixings of all fermions as well as the
presence or absence of CP violating phases in the mixing matrices. At the same time, we
would also like to reduce drastically the number of free parameters in the theory. These two
seemingly contradictory demands can be met by means of a flavour symmetry under which
the families transform in a non-trivial fashion.

Recently, we argued that such a flavour symmetry unbroken at the Fermi scale is the
permutational symmetry of three objects S3 and introduced a minimal S3-invariant extension
of the Standard Model [20]. In this model, we imposed S3 as a fundamental symmetry in
the matter sector. This assumption led us necessarily to extend the concept of flavour and
generations to the Higgs sector. Hence, going to the irreducible representations of S3, we added
to the Higgs SU(2)L doublet in the S3-singlet representation two more Higgs SU(2)L doublets,
which can only belong to the two components of the S3-doublet representation, in this way all
the matter fields in the minimal S3-invariant extension of the Standard Model—Higgs, quark
and lepton fields, including the right-handed neutrino fields—belong to the three-dimensional
representation 1 ⊕ 2 of the permutational group S3. The leptonic sector of the model was
further constrained by an Abelian Z2 symmetry. We found that the S3 ×Z2 symmetry predicts
an almost maximal sin θ23 and a very small value for sin θ13 and an inverted mass hierarchy
of the left-handed neutrinos in good agreement with experiment [20, 21]. More recently, we
reparametrized the mass matrices of the charged leptons and neutrinos, previously derived in
[20], in terms of their eigenvalues and computed the neutrino mixing matrix, VPMNS , and the
neutrino mixing angles and Majorana phases as functions of the masses of charged leptons and
neutrinos. The numerical values of the reactor, θ13, and atmospheric, θ23, mixing angles are
determined only by the masses of the charged leptons in very good agreement with experiment.
The solar mixing angle, θ12, is almost insensitive to the values of the masses of the charged
leptons, but its experimental value allowed us to fix the scale and origin of the neutrino mass
spectrum. We found that the theoretical neutrino mixing matrix VPMNS is nearly tri-bimaximal
in excellent agreement with the latest experimental values [22, 23].

The symmetry S3 [24–33] and the symmetry product groups S3 × S3 [33–36] and
S3 × S3 × S3 [37, 38] broken at the Fermi scale have been considered by many authors
to explain successfully the hierarchical structure of quark masses and mixings in the Standard
Model. Some other interesting models based on the S3, S4, A4 and D5 flavour symmetry
groups, unbroken at the Fermi scale, have also been proposed [39–46]. Recent flavour
symmetry models are reviewed in [47–50], see also the references therein.

In this paper, after a short, updated review of some relevant results on lepton masses and
mixings, we had previously derived, we will discuss some other important flavour violating
effects in the minimal S3-invariant extension of the Standard Model. We will give exact
explicit expressions for the matrices of the Yukawa couplings in the leptonic sector expressed
as functions of the masses of charged leptons and neutral Higgs bosons. With the help of
the Yukawa matrices we will compute the branching ratios of some selected FCNC processes
and the contribution of the exchange of neutral flavour-changing scalars to the anomaly of
the muon’s magnetic moment. We find that the interplay of the S3 × Z2 flavour symmetry
and the strong mass hierarchy of charged leptons strongly suppress the FCNC processes in
the leptonic sector well below the experimental upper bounds by many orders of magnitude.
The contribution to the anomaly, aµ, from FCNC is at most 6% of the discrepancy between
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the experimental value and the Standard Model prediction for aµ, which is a small but not
negligible contribution.

2. The minimal S3-invariant extension of the Standard Model

In the Standard Model analogous fermions in different generations have identical couplings to
all gauge bosons of the strong, weak and electromagnetic interactions. Prior to the introduction
of the Higgs boson and mass terms, the Lagrangian is chiral and invariant with respect to
permutations of the left and right fermionic fields.

The six possible permutations of three objects (f1, f2, f3) are elements of the
permutational group S3. This is the discrete, non-Abelian group with the smallest number of
elements. The three-dimensional real representation is not an irreducible representation of S3.
It can be decomposed into the direct sum of a doublet fD and a singlet fs , where

fs = 1√
3
(f1 + f2 + f3),

f T
D =

(
1√
2
(f1 − f2),

1√
6
(f1 + f2 − 2f3)

)
.

(1)

The direct product of two doublets pD
T = (pD1, pD2) and qD

T = (qD1, qD2) may be
decomposed into the direct sum of two singlets rs and rs′ and one doublet rD

T where

rs = pD1qD1 + pD2qD2, rs′ = pD1qD2 − pD2qD1, (2)

rD
T = (rD1, rD2) = (pD1qD2 + pD2qD1, pD1qD1 − pD2qD2). (3)

The antisymmetric singlet rs′ is not invariant under S3.
Since the Standard Model has only one Higgs SU(2)L doublet, which can only be an S3

singlet, it can only give mass to the quark or charged lepton in the S3 singlet representation,
one in each family, without breaking the S3 symmetry.

Hence, in order to impose S3 as a fundamental symmetry, unbroken at the Fermi scale,
we are led to extend the Higgs sector of the theory. The quark, lepton and Higgs fields are

QT = (uL, dL), uR, dR,

LT = (νL, eL), eR, νR and H,
(4)

in an obvious notation. All of these fields have three species, and we assume that each one
forms a reducible representation 1S ⊕ 2. The doublets carry capital indices I and J , which run
from 1 to 2, and the singlets are denoted by Q3, u3R, d3R, L3, e3R, ν3R and HS . Note that the
subscript 3 denotes the singlet representation and not the third generation. The most general
renormalizable Yukawa interactions of this model are given by

LY = LYD
+ LYU

+ LYE
+ LYν

, (5)

where

LYD
= −Y d

1 QIHSdIR − Y d
3 Q3HSd3R − Y d

2 [QIκIJ H1dJR + QIηIJ H2dJR]

−Y d
4 Q3HIdIR − Y d

5 QIHId3R + h.c., (6)

LYU
= −Yu

1 QI(iσ2)H
∗
S uIR − Yu

3 Q3(iσ2)H
∗
S u3R − Yu

2 [QIκIJ (iσ2)H
∗
1 uJR

+ QIηIJ (iσ2)H
∗
2 uJR] − Yu

4 Q3(iσ2)H
∗
I uIR − Yu

5 QI(iσ2)H
∗
I u3R + h.c., (7)

LYE
= −Y e

1 LIHSeIR − Y e
3 L3HSe3R − Y e

2 [LIκIJ H1eJR + LIηIJ H2eJR]

−Y e
4 L3HIeIR − Y e

5 LIHIe3R + h.c., (8)
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LYν
= −Y ν

1 LI (iσ2)H
∗
S νIR − Y ν

3 L3(iσ2)H
∗
S ν3R − Y ν

2 [LIκIJ (iσ2)H
∗
1 νJR + LIηIJ (iσ2)H

∗
2 νJR]

−Y ν
4 L3(iσ2)H

∗
I νIR − Y ν

5 LI (iσ2)H
∗
I ν3R + h.c., (9)

and

κ =
(

0 1
1 0

)
and η =

(
1 0
0 −1

)
. (10)

Furthermore, we add to the Lagrangian the Majorana mass terms for the right-handed neutrinos:

LM = −M1ν
T
IRCνIR − M3ν

T
3RCν3R. (11)

Due to the presence of three Higgs fields, the Higgs potential VH(HS,HD) is more
complicated than that of the Standard Model. A Higgs potential invariant under S3 was
first proposed by Pakvasa and Sugawara [25], who assumed an additional reflection symmetry
R : Hs → −Hs . These authors found that in addition to the S3 symmetry, their Higgs potential
has an accidental permutational symmetry S ′

2 : H1 ↔ H2. The accidental S ′
2 symmetry is

also present in our VH (HS,HD). The most general form of the potential VH(HS,HD) was
investigated in detail by Kubo, Okada and Sakamaki [51], who discussed the potential of
Pakvasa and Sugawara as a special case. A preliminary study on conditions under which the
minimum of the Higgs potential is a global and stable one can be found in [52]. In this paper,
we will assume that the vacuum respects the accidental S ′

2 symmetry of the Higgs potential
and therefore that

〈H1〉 = 〈H2〉. (12)

With these assumptions, the Yukawa interactions, equations (6)–(9) yield mass matrices,
for all fermions in the theory, of the general form [20]

M =
⎛
⎝µ1 + µ2 µ2 µ5

µ2 µ1 − µ2 µ5

µ4 µ4 µ3

⎞
⎠ . (13)

The Majorana mass for the left-handed neutrinos νL is generated by the see-saw mechanism.
The corresponding mass matrix is given by

Mν = MνD M̃−1
(
MνD

)T
, (14)

where M̃ = diag(M1,M1,M3).
In principle, all entries in the mass matrices can be complex since there is no restriction

coming from the flavour symmetry S3. The mass matrices are diagonalized by bi-unitary
transformations as

U
†
d(u,e)LMd(u,e)Ud(u,e)R = diag(md(u,e), ms(c,µ),mb(t,τ )),

UT
ν MνUν = diag(mν1 ,mν2 ,mν3).

(15)

The entries in the diagonal matrices may be complex, so the physical masses are their absolute
values.

The mixing matrices are, by definition,

VCKM = U
†
uLUdL, VPMNS = U

†
eLUνK. (16)

where K is the diagonal matrix of the Majorana phase factors.
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Table 1. Z2 assignment in the leptonic sector.

− +

HS, ν3R HI , L3, LI , e3R, eIR, νIR

3. The mass matrices in the leptonic sector and Z2 symmetry

A further reduction of the number of parameters in the leptonic sector may be achieved by
means of an Abelian Z2 symmetry. A possible set of charge assignments of Z2, compatible
with the experimental data on masses and mixings in the leptonic sector, is given in table 1.

These Z2 assignments forbid the following Yukawa couplings:

Y e
1 = Y e

3 = Y ν
1 = Y ν

5 = 0. (17)

Therefore, the corresponding entries in the mass matrices vanish, i.e., µe
1 = µe

3 = 0 and
µν

1 = µν
5 = 0.

3.1. The mass matrix of the charged leptons

The mass matrix of the charged leptons takes the form

Me = mτ

⎛
⎝µ̃2 µ̃2 µ̃5

µ̃2 −µ̃2 µ̃5

µ̃4 µ̃4 0

⎞
⎠ . (18)

The unitary matrix UeL that enters in the definition of the mixing matrix, VPMNS , is calculated
from

U
†
eLMeM

†
eUeL = diag

(
m2

e, m
2
µ,m2

τ

)
, (19)

where me,mµ and mτ are the masses of the charged leptons [23]. The parameters |µ̃2|, |µ̃4|
and |µ̃5| may readily be expressed in terms of the charged lepton masses [22]. The resulting
expression for Me, written to order

(
mµme/m2

τ

)2
and x4 = (me/mµ)4, is

Me ≈ mτ

⎛
⎜⎜⎜⎜⎜⎜⎝

1√
2

m̃µ√
1+x2

1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

1√
2

m̃µ√
1+x2

− 1√
2

m̃µ√
1+x2

1√
2

√
1+x2−m̃2

µ

1+x2

m̃e(1+x2)√
1+x2−m̃2

µ

eiδe m̃e(1+x2)√
1+x2−m̃2

µ

eiδe 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

This approximation is numerically exact up to order 10−9 in units of the τ mass. Note that
this matrix has no free parameters other than the Dirac phase δe.

The unitary matrix UeL that diagonalizes MeM
†
e and enters in the definition of the neutrino

mixing matrix VPMNS may be written as

UeL =
⎛
⎝1 0 0

0 1 0
0 0 eiδe

⎞
⎠

⎛
⎝ O11 −O12 O13

−O21 O22 O23

−O31 −O32 O33

⎞
⎠ , (21)

5
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where the orthogonal matrix OeL on the right-hand side of equation (21), written to the same
order of magnitude as Me, is

OeL ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
2
x

(
1+2m̃2

µ+4x2+m̃4
µ+2m̃2

e

)
√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4
− 1√

2

(
1−2m̃2

µ+m̃4
µ−2m̃2

e

)
√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

− 1√
2
x

(
1+4x2−m̃4

µ−2m̃2
e

)
√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4

1√
2

(
1−2m̃2

µ+m̃4
µ

)
√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

1√
2

−
√

1+2x2−m̃2
µ−m̃2

e

(
1+m̃2

µ+x2−2m̃2
e

)
√

1+m̃2
µ+5x2−m̃4

µ−m̃6
µ+m̃2

e+12x4
−x

(
1+x2−m̃2

µ−2m̃2
e

)√
1+2x2−m̃2

µ−m̃2
e√

1−4m̃2
µ+x2+6m̃4

µ−4m̃6
µ−5m̃2

e

√
1+x2m̃em̃µ√
1+x2−m̃2

µ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

where, as before, m̃µ = mµ/mτ , m̃e = me/mτ and x = me/mµ.

3.2. The mass matrix of the neutrinos

According to the Z2 selection rule, equation (17), the mass matrix of the Dirac neutrinos takes
the form

MνD =

⎛
⎜⎝

µν
2 µν

2 0

µν
2 −µν

2 0

µν
4 µν

4 µν
3

⎞
⎟⎠ . (23)

Then, the mass matrix for the left-handed Majorana neutrinos, Mν , obtained from the see-saw
mechanism, Mν = MνD M̃−1

(
MνD

)T
, is

Mν =

⎛
⎜⎝

2
(
ρν

2

)2
0 2ρν

2 ρν
4

0 2
(
ρν

2

)2
0

2ρν
2 ρν

4 0 2
(
ρν

4

)2
+

(
ρν

3

)2

⎞
⎟⎠ , (24)

where ρν
2 = (

µν
2

)/
M

1/2
1 , ρν

4 = (
µν

4

)/
M

1/2
1 and ρν

3 = (
µν

3

)/
M

1/2
3 ; M1 and M3 are the masses

of the right-handed neutrinos appearing in (11).
The non-Hermitian, complex, symmetric neutrino mass matrix Mν may be brought to a

diagonal form by a unitary transformation as

UT
ν MνUν = diag

(∣∣mν1

∣∣eiφ1 ,
∣∣mν2

∣∣eiφ2 ,
∣∣mν3

∣∣eiφν
)
, (25)

where Uν is the matrix that diagonalizes the matrix M†
νMν .

As in the case of the charged leptons the matrices Mν and Uν can be reparametrized in
terms of the complex neutrino masses. Then [22, 23]

Mν =

⎛
⎜⎝

mν3 0
√

(mν3 − mν1)(mν2 − mν3) e−iδν

0 mν3 0√
(mν3 − mν1)(mν2 − mν3) e−iδν 0 (mν1 + mν2 − mν3) e−2iδν

⎞
⎟⎠ (26)

and

Uν =
⎛
⎝1 0 0

0 1 0
0 0 eiδν

⎞
⎠

⎛
⎝ cos η sin η 0

0 0 1
− sin η cos η 0

⎞
⎠ , (27)

where

sin2 η = mν3 − mν1

mν2 − mν1

, cos2 η = mν2 − mν3

mν2 − mν1

. (28)

6
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The unitarity of Uν constrains sin η to be real and thus |sin η| � 1, this condition fixes the
phases φ1 and φ2 as∣∣mν1

∣∣ sin φ1 = ∣∣mν2

∣∣ sin φ2 = ∣∣mν3

∣∣ sin φν. (29)

The only free parameters in these matrices are the phase φν , implicit in mν1 ,mν2 and mν3 , and
the Dirac phase δν .

3.3. The neutrino mixing matrix

The neutrino mixing matrix VPMNS is the product U
†
eLUνK , where K is the diagonal matrix

of the Majorana phase factors, defined by

diag
(
mν1 ,mν2 ,mν3

) = K†diag
(∣∣mν1

∣∣, ∣∣mν2

∣∣, ∣∣mν3

∣∣)K†. (30)

Except for an overall phase factor eiφ1 , which can be ignored, K is

K = diag(1, eiα, eiβ), (31)

where α = 1/2(φ1 − φ2) and β = 1/2(φ1 − φν) are the Majorana phases.
Therefore, the theoretical mixing matrix V th

PMNS is given by

V th
PMNS =

⎛
⎜⎝

O11 cos η + O31 sin η eiδ O11 sin η − O31 cos η eiδ −O21

−O12 cos η + O32 sin η eiδ −O12 sin η − O32 cos η eiδ O22

O13 cos η − O33 sin η eiδ O13 sin η + O33 cos η eiδ O23

⎞
⎟⎠ × K, (32)

where cos η and sin η are given in equation (28), Oij are given in equations (21) and (22), and
δ = δν − δe.

To find the relation of our results with the neutrino mixing angles we make use of the
equality of the absolute values of the elements of V th

PMNS and V PDG
PMNS [53], that is∣∣V th

PMNS

∣∣ = ∣∣V PDG
PMNS

∣∣. (33)

This relation allows us to derive expressions for the mixing angles in terms of the charged
lepton and neutrino masses.

The magnitudes of the reactor and atmospheric mixing angles, θ13 and θ23, are determined
by the masses of the charged leptons only. Keeping only terms of order

(
m2

e

/
m2

µ

)
and

(mµ/mτ )
4, we get

sin θ13 ≈ 1√
2
x

(
1 + 4x2 − m̃4

µ

)
√

1 + m̃2
µ + 5x2 − m̃4

µ

, sin θ23 ≈ 1√
2

1 + 1
4x2 − 2m̃2

µ + m̃4
µ√

1 − 4m̃2
µ + x2 + 6m̃4

µ

. (34)

The magnitude of the solar angle depends on charged lepton and neutrino masses as well as
the Dirac and Majorana phases

|tan θ12|2 = mν2 − mν3

mν3 − mν1

⎛
⎜⎜⎝

1 − 2O11
O31

cos δ

√
mν3 − mν1

mν2 − mν3
+

(
O11
O31

)2 mν3 − mν1

mν2 − mν3

1 + 2O11
O31

cos δ

√
mν2 − mν3

mν3 − mν1
+

(
O11
O31

)2 mν2 − mν3

mν3 − mν1

⎞
⎟⎟⎠ . (35)

The dependence of tan θ12 on the Dirac phase δ, see (35), is very weak, since O31 ∼ 1
but O11 ∼ 1/

√
2(me/mµ). Hence, we may neglect it when comparing (35) with the data on

neutrino mixings.

7
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The dependence of tan θ12 on the phase φν and the physical masses of the neutrinos enters
through the ratio of the neutrino mass differences, it can be made explicit with the help of the
unitarity constraint on Uν , equation (29),

mν2 − mν3

mν3 − mν1

=
(∣∣mν2

∣∣2 − ∣∣mν3

∣∣2
sin2 φν

)1/2 − ∣∣mν3

∣∣|cos φν |(∣∣mν1

∣∣2 − ∣∣mν3

∣∣2
sin2 φν

)1/2
+

∣∣mν3

∣∣|cos φν |
. (36)

Similarly, the Majorana phases are given by

sin 2α = sin(φ1 − φ2) =
∣∣mν3

∣∣ sin φν∣∣mν1

∣∣∣∣mν2

∣∣
× (√∣∣mν2

∣∣2 − ∣∣mν3

∣∣2
sin2 φν +

√∣∣mν1

∣∣2 − ∣∣mν3

∣∣2
sin2 φν

)
, (37)

sin 2β = sin(φ1 − φν)

= sin φν∣∣mν1

∣∣
(∣∣mν3

∣∣√1 − sin2 φν +
√∣∣mν1

∣∣2 − ∣∣mν3

∣∣2
sin2 φν

)
. (38)

A more complete and detailed discussion of the Majorana phases in the neutrino mixing matrix
VPMNS obtained in our model is given by Kubo [54].

4. Neutrino masses and mixings

In the present model, sin2 θ13 and sin2 θ23 are determined by the masses of the charged leptons
in very good agreement with the experimental values [11, 12, 55],

(sin2 θ13)
th = 1.1 × 10−5, (sin2 θ13)

exp � 0.046, (39)

and

(sin2 θ23)
th = 0.499, (sin2 θ23)

exp = 0.5+0.06
−0.05. (40)

In this model, the experimental restriction
∣∣�m2

12

∣∣ <
∣∣�m2

13

∣∣ implies an inverted neutrino
mass spectrum,

∣∣mν3

∣∣ <
∣∣mν1

∣∣ <
∣∣mν2

∣∣ [20].
As can be seen from equations (35) and (36), the solar mixing angle is sensitive to the

neutrino mass differences and the phase φν but is only very weakly sensitive to the charged
lepton masses. If we neglect the small terms proportional to O11 and O2

11 in (35), we get

tan2 θ12 =
(
�m2

12 + �m2
13 +

∣∣mν3

∣∣2
cos2 φν

)1/2 − ∣∣mν3

∣∣|cos φν |(
�m2

13 +
∣∣mν3

∣∣2
cos2 φν

)1/2
+

∣∣mν3

∣∣|cos φν |
. (41)

From this expression, we may readily derive expressions for the neutrino masses in terms
of tan θ12 and φν and the differences of the squared masses of the neutrinos

∣∣mν3

∣∣ =
√

�m2
13

2 cos φν tan θ12

1 − tan4 θ12 + r2√
1 + tan2 θ12

√
1 + tan2 θ12 + r2

, (42)

and
∣∣mν1

∣∣ =
√∣∣mν3

∣∣2
+ �m2

13,
∣∣mν2

∣∣ =
√∣∣mν3

∣∣2
+ �m2

13(1 + r2) (43)

where r2 = �m2
12

/
�m2

13 ≈ 3 × 10−2.
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As r2 � 1, the sum of the neutrino masses is

3∑
i=1

∣∣mνi

∣∣ ≈
√

�m2
13

2 cos φν tan θ12

(
1 + 2

√
1 + 2 tan2 θ12(2 cos2 φν − 1) + tan4 θ12 − tan2 θ12

)
.

(44)

The most restrictive cosmological upper bound for this sum is [17]∑
|mν | � 0.17 eV. (45)

From this upper bound and the experimentally determined values of tan θ12 and �m2
ij , we may

derive a lower bound for cos φν ,

cos φν � 0.55, (46)

or 0 � φν � 57◦. The neutrino masses |mνi
| assume their minimal values when cos φν = 1.

When cos φν takes values in the range 0.55 � cos φ � 1, the neutrino masses change very
slowly with cos φν . In the absence of experimental information we will assume that φν

vanishes. Hence, setting φν = 0 in our formula, we find∣∣mν2

∣∣ ≈ 0.056 eV
∣∣mν1

∣∣ ≈ 0.055 eV
∣∣mν3

∣∣ ≈ 0.022 eV, (47)

where we used the values �m2
13 = 2.6 × 10−3 eV2,�m2

21 = 7.9 × 10−5 eV2 and tan θ12 =
0.667 taken from [13].

5. Flavour-changing neutral currents (FCNC)

Models with more than one Higgs SU(2) doublet have tree level flavour-changing neutral
currents. In the minimal S3-invariant extension of the Standard Model, considered here, there
is one Higgs SU(2) doublet per generation coupling to all fermions. The flavour-changing
Yukawa couplings may be written in a flavour labelled symmetry adapted weak basis as

LFCNC
Y = (

EaLYES
ab EbR + UaLYUS

ab UbR + DaLYDS
ab DbR

)
H 0

S

+
(
EaLYE1

ab EbR + UaLYU1
ab UbR + DaLYD1

ab DbR

)
H 0

1

+
(
EaLYE2

ab EbR + UaLYU2
ab UbR + DaLYD2

ab DbR

)
H 0

2 + h.c. (48)

where the entries in the column matrices E′s, U ′s and D′s are the left and right fermion fields
and Y

(e,u,d)s
ab , Y

(e,u,d)1,2
ab are 3 × 3 matrices of the Yukawa couplings of the fermion fields to the

neutral Higgs fields H 0
s and H 0

I in the S3-singlet and doublet representations, respectively.
In this basis, the Yukawa couplings of the Higgs fields to each family of fermions may

be written in terms of matrices M(e,u,d)
Y , which give rise to the corresponding mass matrices

M(e,u,d) when the gauge symmetry is spontaneously broken. From this relation we may
calculate the flavour-changing Yukawa couplings in terms of the fermion masses and the
vacuum expectation values of the neutral Higgs fields. For example, the matrix Me

Y is written
in terms of the matrices of the Yukawa couplings of the charged leptons as

Me
Y = YE1

w H 0
1 + YE2

w H 0
2 , (49)

in this expression the index w means that the Yukawa matrices are defined in the weak
basis. The Yukawa couplings of immediate physical interest in the computation of the flavour-
changing neutral currents are those defined in the mass basis, according to Ỹ EI

m = U
†
eLYEI

w UeR ,

9
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where UeL and UeR are the matrices that diagonalize the charged lepton mass matrix defined
in equations (15) and (21). We obtain [23]

Ỹ E1
m ≈ mτ

v1

⎛
⎜⎝

2m̃e − 1
2 m̃e

1
2x

−m̃µ
1
2 m̃µ − 1

2
1
2 m̃µx2 − 1

2 m̃µ
1
2

⎞
⎟⎠

m

, (50)

and

Ỹ E2
m ≈ mτ

v2

⎛
⎜⎝

−m̃e
1
2 m̃e − 1

2x

m̃µ
1
2 m̃µ

1
2

− 1
2 m̃µx2 1

2 m̃µ
1
2

⎞
⎟⎠

m

, (51)

where m̃µ = 5.94 × 10−2, m̃e = 2.876 × 10−4 and x = me/mµ = 4.84 × 10−3. All the
non-diagonal elements are responsible for tree-level FCNC processes. The actual values of
the Yukawa couplings in equations (50) and (51) still depend on the VEVs of the Higgs fields
v1 and v2 and hence on the Higgs potential. If the S ′

2 symmetry in the Higgs sector is preserved
[25],

〈
H 0

1

〉 = 〈
H 0

2

〉 = v. In order to make an order of magnitude estimate of the coefficient
in the Yukawa matrices, mτ/v, we may further assume that the VEVs for all the Higgs
fields are comparable, that is, tan β = 〈

H 0
s

〉/〈
H 0

1

〉 = 1, and
〈
H 0

s

〉 = 〈
H 0

1

〉 = 〈
H 0

2

〉 =
√

2√
3

MW

g2
,

then mτ/v = √
3/

√
2g2mτ/MW and we may estimate the numerical values of the Yukawa

couplings from the numerical values of the lepton masses. For instance, the amplitude of the
flavour violating process τ− → µ−e+e− is proportional to Ỹ E

τµỸ E
ee [56]. Then, the leptonic

branching ratio,

Br(τ → µe+e−) = (τ → µe+e−)

(τ → eνν̄) + (τ → µνν̄)
(52)

and

(τ → µe+e−) ≈ m5
τ

3 × 210π3

(
Y 1,2

τµ Y 1,2
ee

)2

M4
H1,2

(53)

which is the dominant term, and the well-known expressions for (τ → eνν̄) and
(τ → µνν̄) [53] give

Br(τ → µe+e−) ≈ 9

4

(
memµ

m2
τ

)2 (
mτ

MH1,2

)4

, (54)

taking for MH1,2 ∼ 120 GeV, we obtain

Br(τ → µe+e−) ≈ 3.15 × 10−17

well below the experimental upper bound for this process, which is 2.7 × 10−7 [57]. Similar
computations give the following estimates:

Br(τ → eγ ) ≈ 3α

8π

(
mµ

MH

)4

, (55)

Br(τ → µγ ) ≈ 3α

128π

(
mµ

mτ

)2 (
mτ

MH

)4

, (56)

Br(τ → 3µ) ≈ 9

64

(
mµ

MH

)4

, (57)

10
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Table 2. Leptonic FCNC processes, calculated with MH1,2 ∼ 120 GeV.

Experimental
FCNC processes Theoretical BR upper bound BR References

τ → 3µ 8.43 × 10−14 2 × 10−7 Aubert et al [57]
τ → µe+e− 3.15 × 10−17 2.7 × 10−7 Aubert et al [57]
τ → µγ 9.24 × 10−15 6.8 × 10−8 Aubert et al [58]
τ → eγ 5.22 × 10−16 1.1 × 10−11 Aubert et al [59]
µ → 3e 2.53 × 10−16 1 × 10−12 Bellgardt et al [60]
µ → eγ 2.42 × 10−20 1.2 × 10−11 Brooks et al [61]

Br(µ → 3e) ≈ 18

(
memµ

m2
τ

)2 (
mτ

MH

)4

, (58)

and

Br(µ → eγ ) ≈ 27α

64π

(
me

mµ

)4 (
mτ

MH

)4

. (59)

If we do not assume vs = v1 = v2, but keep vs/v1 = tan β unspecified, the expressions
(55)–(59) must be multiplied by a factor (2 + tan2 β)2/9.

We see that FCNC processes in the leptonic sector are strongly suppressed by the small
values of the mass ratios me/mτ ,mµ/mτ and mτ/MH . The numerical estimates of the
branching ratios and the corresponding experimental upper bounds are shown in table 2. It
may be seen that, in all cases considered, the numerical values for the branching ratios of the
FCNC in the leptonic sector are well below the corresponding experimental upper bounds. The
matrices of the quark Yukawa couplings may be computed in a similar way. Numerical values
for the Yukawa couplings for u- and d-type quarks are given in our previous paper [20]. There,
it was found that, due to the strong hierarchy in the quark masses and the corresponding small
or very small mass ratios, the numerical values of all the Yukawa couplings in the quark sector
are small or very small. Kubo, Okada and Sakamaki [51] have investigated the breaking of the
gauge symmetry in the case of the most general Higgs potential invariant under S3. They found
that by breaking the S3 symmetry very softly at very high energies it is possible to maintain
the consistency and predictions of the present S3-invariant extension of the Standard Model
while simultaneously satisfying the experimental constraints for FCNC processes, that is, it
is possible that all physical Higgs bosons, except one neutral one, could become sufficiently
heavy (MH ∼ 10 TeV) to suppress all the flavour-changing neutral current processes in the
quark sector of the theory without having a problem with triviality.

6. Muon anomalous magnetic moment

In models with more than one Higgs SU(2) doublet, the exchange of flavour-changing
scalars may contribute to the anomalous magnetic moment of the muon. In the minimal
S3-invariant extension of the Standard Model we are considering here, we have three Higgs
SU(2) doublets, one in the singlet and the other two in the doublet representations of the
S3 flavour group. The Z2 symmetry decouples the charged leptons from the Higgs boson in
the S3 singlet representation. Therefore, in the theory there are two neutral scalars and two
neutral pseudoscalars whose exchange will contribute to the anomalous magnetic moment
of the muon, in the leading order of magnitude. Since the heavier generations have larger

11
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µ
Hµ

γ

τYµτ
Yτµτ

Figure 1. The contribution, δa
(H)
µ , to the anomalous magnetic moment of the muon from the

exchange of flavour-changing scalars. The neutral Higgs boson can be a scalar or a pseudoscalar.

(This figure is in colour only in the electronic version)

flavour-changing couplings, the largest contribution comes from the heaviest charged leptons
coupled to the lightest of the neutral Higgs bosons, µ − τ − H , as shown in figure 1.

A straightforward computation gives

δa(H)
µ = YµτYτµ

16π2

mµmτ

M2
H

(
log

(
M2

H

m2
τ

)
− 3

2

)
. (60)

With the help of (50) and (51) we may write δa(H)
µ as

δa(H)
µ = m2

τ

(246 GeV)2

(2 + tan2 β)

32π2

m2
µ

M2
H

(
log

(
M2

H

m2
τ

)
− 3

2

)
, (61)

in this expression tan β = vs/v1 is the ratio of the vacuum expectation values of the Higgs
scalars in the singlet representation, vs , and in the doublet representation, v1, of the S3 flavour
group. The most restrictive upper bound on tan β may be obtained from the experimental
upper bound on Br(µ → 3e) given in (58), and in table 2 we obtain

tan β � 14. (62)

Substitution of this value into (61) and taking for the Higgs mass the value MH = 120 GeV
gives an estimate of the largest possible contribution of the FCNC to the anomaly of the muon’s
magnetic moment:

δa(H)
µ ≈ 1.7 × 10−10. (63)

This number has to be compared with the difference between the experimental value and the
Standard Model prediction for the anomaly of the muon’s magnetic moment [62],

�aµ = aexp
µ − aSM

µ = (28.7 ± 9.1) × 10−10, (64)

which means

δa(H)
µ

�aµ

≈ 0.06. (65)

Hence, the contribution of the flavour-changing neutral currents to the anomaly of the muon’s
magnetic moment is smaller than or of the order of 6% of the discrepancy between the
experimental value and the Standard Model prediction. This discrepancy is of the order of three
standard deviations and quite important, but its interpretation is compromised by uncertainties
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in the computation of higher order hadronic effects arising mainly from three-loop vacuum
polarization effects, aVP

µ (3, had) ≈ −1.82 × 10−9 [63], and from three-loop contributions
of hadronic light by light type, aLBL

µ (3, had) ≈ 1.59 × 10−9 [63]. As explained above, the
contribution to the anomaly from flavour-changing neutral currents in the minimal S3-invariant
extension of the Standard Model, computed in this work, is, at most, 6% of the discrepancy
between the experimental value and the Standard Model prediction for the anomaly and is of
the same order of magnitude as the uncertainties in the higher order hadronic contributions, but
still it is not negligible and is certainly compatible with the best, state-of-the-art, experimental
measurements and theoretical computations.

7. Conclusions

In the minimal S3-invariant extension of the SM the flavour symmetry group Z2 × S3 relates
the mass spectrum and mixings. This allowed us to compute the neutrino mixing matrix
explicitly in terms of the masses of the charged leptons and neutrinos [22]. In this model,
the magnitudes of the three mixing angles are determined by the interplay of the flavour
S3 × Z2 symmetry, the see-saw mechanism and the lepton mass hierarchy. We also found
that VPMNS has three CP violating phases, one Dirac phase δ = δν − δe and two Majorana
phases, α and β, that are functions of the neutrino masses and another phase φν which is
independent of the Dirac phase. The numerical values of the reactor, θ13, and the atmospheric,
θ23, mixing angles are determined by the masses of the charged leptons only, in very good
agreement with the experiment. The solar mixing angle θ12 is almost insensitive to the values
of the masses of the charged leptons, but its experimental value allowed us to fix the scale
and origin of the neutrino mass spectrum, which has an inverted hierarchy, with the values∣∣mν2

∣∣ = 0.056 eV,
∣∣mν1

∣∣ = 0.055 eV and
∣∣mν3

∣∣ = 0.022 eV. We also obtained explicit
expressions for the matrices of the Yukawa couplings of the lepton sector parametrized in
terms of the charged lepton masses and the VEVs of the neutral Higgs bosons in the S3-
doublet representation. These Yukawa matrices are closely related to the fermion mass
matrices and have a structure of small and very small entries reflecting the observed charged
lepton mass hierarchy. With the help of the Yukawa matrices, we computed the branching
ratios of a number of FCNC processes and found that the branching ratios of all FCNC
processes considered are strongly suppressed by powers of the small mass ratios me/mτ and
mµ/mτ and by the ratio

(
mτ

/
MH1,2

)4
, where MH1,2 is the mass of the neutral Higgs bosons in

the S3-doublet. Taking for MH1,2 a very conservative value (MH1,2 ≈ 120 GeV), we found that
the numerical values of the branching ratios of the FCNC in the leptonic sector are well below
the corresponding experimental upper bounds by many orders of magnitude. It has already
been argued that small FCNC processes mediating non-standard quark–neutrino interactions
could be important in the theoretical description of the gravitational core collapse and shock
generation in the explosion stage of a supernova [64–66]. Finally, the contribution of the
flavour-changing neutral currents to the anomalous magnetic moment of the muon is small but
non-negligible and it is compatible with the best state-of-the-art measurements and theoretical
computations.
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